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This paper reports the result of direct simulations of fluid-particle motions in two 
dimensions. We solve the initial value problem for the sedimentation of circular and 
elliptical particles in a vertical channel. The fluid motion is computed from the 
Navier-Stokes equations for moderate Reynolds numbers in the hundreds. The 
particles are moved according to the equations of motion of a rigid body under the 
action of gravity and hydrodynamic forces arising from the motion of the fluid. The 
solutions are as exact as our finite-element calculations will allow. As the Reynolds 
number is increased to 600, a circular particle can be said to experience five different 
regimes of motion: steady motion with and without overshoot and weak, strong and 
irregular oscillations. An elliptic particle always turn its long axis perpendicular to the 
fall, and drifts to the centreline of the channel during sedimentation. Steady drift, 
damped oscillation and periodic oscillation of the particle are observed for different 
ranges of the Reynolds number. For two particles which interact while settling, a 
steady staggered structure, a periodic wake-action regime and an active draf- 
ting-kissing-tumbling scenario are realized at increasing Reynolds numbers. The non- 
linear effects of particle-fluid, particle-wall and interparticle interactions are analysed, 
and the mechanisms controlling the simulated flows are shown to be lubrication, 
turning couples on long bodies, steady and unsteady wakes and wake interactions. The 
results are compared to experimental and theoretical results previously published. 

1. Introduction 
There are two different ways of looking at a two-phase system. One is the continuum 

approach that views solids and fluids as interpenetrating continua, each being 
governed by conservation laws, either postulated or derived by averaging, with 
transport terms representing the interaction of both phases (Ishii 1975; Drew 1983; 
Joseph & Lundgren 1990). The major difficulty is that these interaction terms are not 
known from the theory, and have to be otherwise specified to close the equations 
(Anderson & Jackson 1967). An alternative approach is to solve the equations for each 
phase exactly by numerical methods, moving the particles according to the equations 
of a rigid body with forces computed by direct simulation. This approach does not 
require assumptions and can be as exact as numerical methods will allow. The 
numerical solutions can be interrogated for the hydrodynamic forces that induce the 
micro-structural arrangements of particles which determine the macroscopic properties 
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of the flow. A drawback is that in fully nonlinear problems only a few particles can be 
handled at present, but the future is brighter. 

Many-particle problems have been treated in the limit of zero Reynolds number by 
Brady & Bossis (1985) and Kim (1991). Problems of the motion of a few particles and 
bubbles at finite Reynolds number in three dimensions have been simulated using a 
front-tracking method by Unverdi & Tryggvason (1 992). More recently, Kim, 
Elghobashi & Sirignano (1993) performed a three-dimensional numerical simulation of 
a steady flow past two fixed spheres at Reynolds numbers up to 150. A two- 
dimensional direct simulation of the motion of sedimenting circular and elliptic 
particles in a channel is given in Hu, Joseph & Crochet (1992b) using a finite element 
method, and a video of this simulation together with a short paper is given in Hu, 
Fortes & Joseph (1992a). The major difficulty concerns the nonlinear effects that arise 
when (a) the Reynolds number is large enough for inertia to be important, (b) the fluid 
is non-Newtonian and the flow is inherently nonlinear and (c) the particle is 
defonnable. In this study, we will consider the case of rigid particles in Newtonian 
fluids only, so that inertia is the only form of nonlinearity besides the changing 
geometry. 

There is an extensive literature using superposition of fundamental solutions 
(Stokeslets) in problems of the motion of interacting spheres in Stokes flow (Hocking 
1964; Wacholder & Sather 1974). The extension to an assemblage of many particles has 
also been extensively explored (Happel & Brenner 1965 ; Feuillebois 1989 ; Hassonjee, 
Pfeffer & Ganatos 1992; Brady & Bossis 1985; Kim 1991). 

Weak effects of inertia may be determined by perturbation of the Stokes solution for 
small Reynolds numbers. Particle-fluid interactions for slow flows have been discussed 
by Brenner (1966), Batchelor (1974) and Leal (1980). Leal (1980) has noted that the 
accumulative effect of weak inertia can produce large effects that are not in the linear 
theory. The anomalous effects predicted by these studies, such as the lateral migration 
of particles in a shear flow, agree qualitatively with experimental observations, some 
of them made in situations where the inertial effect is not at all weak. The success of 
first-order perturbation theories makes people wonder why in some cases strong 
nonlinearity does not seem to give additional features to the flow, and more 
importantly, whether this is true in other cases. 

Explicit analytic solutions of fully nonlinear problems of fluid-particle motions are 
rare. Numerous codes have been developed to simulate nonlinearity by solving the full 
Navier-Stokes equations for situations such as flow around fixed bluff bodies. The 
problem of simulating the unsteady motion and interaction of particles raises an 
additional difficulty in that the boundaries of the computational domain are ever 
changing owing to the motion of the particles, and the coupling between solids and 
fluids is of a more complicated type. Hu et al. (1992b)’s adaptation of a Navier-Stokes 
solver, POLYFLOW, has been successful in dealing with the combination of full 
nonlinearity and fluid-solid coupling. At each time step, the previous flow field gives 
the force and torque on the particles, whose motion is then explicitly updated by 
Newton’s law, giving rise to a new domain. After remeshing and mapping the old flow 
field onto the new mesh, the nonlinear Navier-Stokes equations are solved by a finite- 
element formulation, iteratively with the implicitly discretized Newton’s equation for 
particle velocities, which are also part of the boundary conditions for the fluid flow. 
The purpose of this paper is to apply this code to various physically interesting flow 
situations involving strong inertial effects, interaction among particles and between 
particles and bounding walls. We do try to compare the results of our two-dimensional 
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simulation with experiments, understanding that the evolution of rules for such an 
unnatural comparison is also a topic that needs study. 

We simulate the following flow situations in which particle-fluid, inter-particle and 
particle-wall interactions are fully manifested : 

(i) The settling of a single circular particle through quiescent fluid between parallel 
walls. We study the initial value problem in which a particle is dropped from rest and 
we look at the drag, transients, bifurcation to time-dependent solutions, the trajectories 
of the particles and their position of equilibrium, and the influence of the ratio of 
channel width to particle diameter on the flow. 

(ii) The settling of an elliptic particle in the same channel. We will study the lateral 
position of equilibrium as well as the preferred orientation of the particle. 

(iii) Sedimentation of two particles in a channel. We will give special attention to the 
pattern of interactions among the particles. 

Because these problems involve many complicated effects and comparable studies, 
either numerical or experimental, are rare, we feel it necessary to use relatively simple 
test problems to further confirm the validity of our simulation. Therefore, we have 
computed, as test cases, the steady flow around a fixed circular cylinder and the 
unsteady flow caused by the abrupt start-up of a slender elliptic cylinder at incidence. 

In the following sections, we will first discuss the test problems, which do seem to 
validate our code. Then, numerical results will be presented on each problem listed 
above and discussed in association with available experimental observations as well as 
previous theoretical results. 

2. Test problems 
The steady flow around a circular cylinder fits our requirement here because it has 

been thoroughly studied and documented. To test the code's ability to handle transient 
Navier-Stokes problems, we choose the problem of impulsive acceleration of an elliptic 
cylinder in a quiescent fluid, as it has also been systematically explored by many 
researchers, e.g. Honji (1972) and Taneda (1977) experimentally, and Lugt & 
Haussling (1974), Pate1 (1981) and Park, Park & Hyun (1989) numerically. Besides, this 
problem reveals the hydrodynamics associated with the formation and shedding of 
vortices behind a slender body. It has a practical relevance and is by itself interesting 
as reflected by recent studies (Shintani, Umemura & Takano 1983; Ota & Nishiyama 
1984). 

A circular cylinder (diameter d) is fixed at the centre of a channel of width 20d. 
Computation is carried out for Re = 40. The streamlines and isovorticity lines are 
shown in figure 1. These are seen to be in good agreement with the classic results of 
Apelt (1961). In figure 2, the pressure distribution on the surface of the cylinder is 
compared to the numerical calculations of Apelt (1961) and Fornberg (1980), and to 
some experimental data that Thom (1933) measured at slightly different Reynolds 
numbers. The pressure coefficient we computed agrees well with the data of Apelt 
(1961) and Thom (1933), but is considerably smaller than Fornberg's C,, especially 
around 0 = 90" where C, has a minimum. This is probably because Fornberg used an 
extremely large domain to avoid the influence of channel blockage. If we estimate the 
pressure as varying with the square of the local velocity (Bernoulli's equation), 
blockage will reduce C, greatly. This has been verified by our numerical experiments 
using channels of different width. 

The second numerical example involves a slender ellipse of aspect ratio 10.03 which 
is placed in the middle of a two-dimensional channel of width 4d, d being the length 
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FIGURE 1. The streamlines and isovorticity lines of a steady flow around a fixed circular cylinder 
at Re = 40. The flow is from left to right. 
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FIGURE 2.  Pressure distribution on the surface of the cylinder. Apelt (1961), Fornberg (1980) 
and our calculation are at Re = 40. 

of the major axis. The ellipse makes an angle of 45" with the walls of the channel. At 
t = 0, the ellipse instantly gains a constant velocity U in the direction of the channel 
wall that corresponds to Re = Ud/v  = 200. The geometry of the ellipse, the angle of 
attack and Re are the same as in Lugt & Haussling (1974) to facilitate comparison. The 
initial condition is (u, v) = (U,  0) everywhere except on the surface of the body, where 
zero velocity is implemented for all time. The channel walls are specified as undisturbed 
streamlines. The inlet of the domain is 10d ahead of the body, where uniform velocity 
U is applied, while the outlet is 15d downstream of the body, where normal derivatives 
of velocity are set to zero. This outer boundary is different than the elliptic coordinate 
boundary Lugt & Haussling (1974) adopted. They imposed the potential flow solution 
around the ellipse on the outer boundary which is determined by an elliptic coordinate. 



Solid bodies in Newtonian JEuid. Part 1 99 

(a) t* = 0.2 

(b) t* = 0.8 

I 

(c )  t* = 2.6 

FIGURE 3. Streamlines and isovorticity lines for the early stages of flow field development. 
Dimensionless time t* = Ut/d. 

Early stages of the developing flow field are shown in figure 3 (a-c). Because we used 
a coarse mesh and the remeshing package does not perform as well on surfaces of large 
curvature, the streamline near the front surface is not smooth for some cases. Apart 
from that, the evolution of the flow is much the same as the numerical predictions of 
Lugt & Haussling (1974) and Pate1 (1981), Honji (1972)’s visualization verifies those 
pictures. We note that our timescale is different than that in Lugt & Haussling, but in 
terms of the dimensionless time t* = Ut/d,  the two results agree perfectly. 

After the initial transient, a periodic flow is achieved with vortices shedding 
alternately from both ends of the slender body. A complete cycle is shown in figure 
4(a-e). The general pattern of flow is again in agreement with previous numerical 
results (Lugt & Haussling 1974; Park et al. 1989). We have noticed, however, that our 
wake is narrower and longer than Lugt & Haussling’s for the same parameters. The 
reason for this difference is probably the strong wall confinement in our problem. The 
oscillatory pattern and mean values of the drag, lift and moment on the body are all 
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(a) t* = 3.6 

(b) t* = 4.6 

(c) t* = 5.6 

(a) t *  = 6.6 

(e) t* = 7.6 

FIGURE 4. Streamlines and isovorticity lines for a cycle of vortex shedding behind the body. 
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FIGURE 5. The drag, lift and moment coefficients on the elliptic cylinder after its abrupt start-up. 

very close to those of Lugt & Haussling (1974) (figure 5). Actually, the Strouhal 
numbers for the first two cycles are 0.23 and 0.25 in our case, as compared to 0.23 and 
0.26 in Lugt & Haussling. But the amplitude of oscillation is smaller here, and it 
decreases more rapidly at the beginning. 

In conclusion, comparison of the simulations of test problems using our code and 
previously published results indicates that our solver works with acceptable accuracy, 
and we can apply it to more complex problems. 

3. Settling of a circular particle between parallel walls 
A circular particle of diameter d is released from different lateral positions, with zero 

initial velocity, in a channel of width L. The x-axis is vertically down on the left wall, 
and the y-axis horizontal to the right. The initial position of the centre of the particle 
is therefore (0,yJ. The particle is heavier than the fluid and starts to settle under 
gravity. In the absence of inertia, the particle would settle straight down with no lateral 
motion (Happel & Brenner 1965). This is no longer the case when inertia becomes 
important. By varying the density of the particle, we are able to control the mean 
terminal velocity and to access Reynolds numbers (based on the particle diameter) 
corresponding to different regimes of sedimentation. Five intervals of Re can be 
demarcated in terms of the mean position of equilibrium, the approach to equilibrium 
and the presence or absence of oscillation around the equilibrium. For each 
computation, numerical tests were carried out for an extended time period to ensure 
that the results obtained represent the long-time behaviour correctly. 

We have used three channels of different width ( L  = 1.5d, 4d and 8d) in our 
computation. Major features of the sedimentation are the same in all channels, and the 
behaviour of the particle can be classified into five regimes which occur at different 
Reynolds number intervals depending on the channel width. We will first establish the 
flow regimes for one channel width L = 4d. Results for the other two channels will then 
be discussed as associated with wall effects. 
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FIGURE 6. Regime A : settling trajectories for particles released from different initial positions. 
(a) Re = 0.522, (b)  Re = 1.03. Channel width L = 4d, d being the diameter of the circular particle. 
The centre of the channel is a global attractor. 

3.1. Flow regimes 
Regime A :  Steady equilibrium with monotonic approach (0.1 < Re < 2 )  

The particle drifts monotonically to a steady equilibrium on the centreline of the 
channel independent of the initial position of the particle. When starting from an initial 
position off the centre, the particle will rotate until it reaches the centreline where the 
rotation stops. The sense of rotation is always such that the particle seems to roll up 
the closer wall. The trajectories for Re = 0.522 and 1.03 are shown in figure 6(a, b). The 
small wiggles at the beginning of the sedimentation are due to numerical errors 
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FIGURE 7. Regime B:  settling trajectories of particles at (a) Re = 3.23, (b) Re = 8.33. 

associated with explicit updating of particle positions, and are apparent only when the 
settling velocity is small. The range of low Reynolds number 0.1 < Re < 2 is arbitrary. 
Inertia will eventually have its way at any Reynolds number, no matter how small. 

Regime B: Steady equilibrium with a transient overshoot (3 < Re < Recrit) 
In this regime, the centre of the channel is still an equilibrium position, but the 

approach to it is not monotonic. There is an initial overshoot followed by a damped 
oscillation. The angular position of the particle also has an overshoot, but the rotation 
will finally vanish after the particle stabilizes on the centreline. Shown in figure 7 are 
the trajectories of particles released near the wall at two Reynolds numbers. 

Regime C:  Weak oscillatory motion (Recrit < Re < 60) 
When the Reynolds number exceeds a critical value, the steady equilibrium position 

at the centre of the channel becomes unstable, and the long-term behaviour of the 
particle is a weak oscillation around an equilibrium position slightly off-centre. This 
off-centre distance becomes larger as Re increases (figure 8). In the 4d channel, the 
critical Reynolds number is probably in the twenties. The upper bound of this regime 
is set by considering the advent of the strong oscillatory motion caused by vortex 
shedding. 

Regime D:  Strong oscillatory motion (60 < Re < 300) 
Some typical trajectories are compared in figure 9(a). As compared to regime C, the 

particle oscillates with much larger amplitude around a mean equilibrium position that 
is further away from the centreline. The oscillation is not monochromatic, but it may 
be periodic with a modulation in the amplitude. Once the particle is off the centre, the 
wall effect imposes a unidirectional rotation on the particle, as is shown in figure 9(b). 
Contrary to regimes A and B, the sense of rotation here is such that the particle seems 
to roll down the nearby wall. The oscillations in rotation and trajectory are locked and 
have the same frequency. The upper and lower bounds of this interval are set somewhat 
arbitrarily. 
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FIGURE 8. Regime C :  settling trajectories at different Reynolds numbers. (a) Re = 27.6, particle 
released from (i) the centre, y , /L  = 0.5, (ii) an initial position close to one wall, y o / L  = 0.13; 
(b) Re = 50.6, particle released from the centre. 

Regime E:  Irregular oscillatory motion (Re > 300) 

If Re is further increased in the last regime, we expect the periodic behaviour to 
become unstable and break down into less regular patterns. Indeed, this seems to be 
the case at Re = 490 (figure lo). The long-term dynamics of the flow may be chaotic, 
but we cannot distinguish numerical noise from chaos in that extreme. 
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FIGURE 9. Regime D : sedimentation of particles at relatively high Reynolds numbers. 
(a) Settling trajectories, (b)  angular velocities. 

3.2. Analysis of t h e j o w  regimes 
A natural way of understanding the above regimes is by examining the local flow 
around the particle at different Reynolds numbers. Indeed, looking through the five 
regimes, it is immediately clear that they are closely related to the different phases of 
the wake structure behind a fixed circular cylinder in a uniform flow. Our problem is 
different from the fixed cylinder problem because of wall effects and the unsteady 
trajectory of the cylinders. But it is still illuminating to compare our regimes with well- 
established experimental observations of uniform flow around circular cylinders 
(Gerrard 1978; Morkovin 1964). 
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FIGURE 10. Regime E: settling trajectory of a particle released from the centre at Re = 490. 

FIGURE 11. Streamlines around the settling particle at different Reynolds numbers. 

At Re below 3 ,  the inertia of a fluid flowing around a fixed cylinder is already 
considerable, but still not strong enough to produce a circulation zone (see figure 11 
for the streamlines at different Re). This corresponds to our regime of monotonic 
approach to a steady equilibrium. At about Re = 3 - 5 ,  steady and symmetric 
standing eddies emerge on the rear side of the cylinder, and remain till Re equals about 
30, when they become unsteady. This corresponds to our regime B in which particles 
approach the centreline with overshoot. It is not certain whether the separated wake 
is directly responsible for the overshoot, or the inertia is just strong enough at that 
stage. Then steady standing vortices give way to a wavy but still attached wake, which 
becomes more unsteady until periodic vortex shedding starts at about Re = 60 to form 
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FIGURE 12. Amplitude and frequency of the oscillation in regimes C, D and E. The calculated 
frequency, represented by the Strouhal number St = fd/ U, is compared to the measurements of 
Gerrard (1978) and Williamson (1988). 

the Karman vortex sheet. In our simulation, this stage corresponds to the regime of 
weak oscillatory motion. The critical Reynolds number for the onset of unsteadiness 
is smaller than its counterpart for a fixed cylinder in an unbounded fluid. This is 
because of the confinement of the walls, and the effect will be further addressed in $3.3.  
The Kirman vortex street, which prevails at about 60 < Re < 300, is responsible for 
the persistent oscillation in regime D. 

Another important feature of regimes C and D, the drift off the centreline, is 
obviously related to the wall effect and cannot be explained from the wake structure 
alone. We believe that the mechanism is a potentially destabilizing lift force related to 
particle rotation. At small Reynolds numbers, a particle released near the wall will 
rotate as if it is rolling up the wall. This is well known in the literature and is probably 
due to wall blockage. This rotation gives rise to a Magnus type of lift that tends to 
move the particle away from the wall. In the high-Re regimes, the sense of rotation is 
reversed and the lift force tends to move the particle off the centreline. If this lift is 
strong enough to dominate the wall repulsion, and the unsteadiness in the wake causes 
large enough sidewise disturbance, the equilibrium at the centreline will become 
unstable. The synchronization of the onsets of the drift and the persistent rotation in 
figure 9 (a, b) appears to support the above explanation. This mechanism will be further 
discussed in $4.1 where it is related to sedimentation of an elliptic particle at high 
Reynolds numbers. 

Finally, the irregular oscillation regime in our simulation is readily identified with 
the instability in the wake of a cylinder that happens around Re = 300 as the first 
indication of transition to a more chaotic flow field that eventually evolves into 
turbulence (Morkovin 1964). 

If we look more carefully at the numerical results, further evidence of the wake 
action can be discerned. For example, the amplitude of oscillation in regime D is 
determined by the strength of vortex shedding which increases with Re, causing a wider 
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wake until the Karmin vortex street becomes unstable and the loss of periodicity in 
vortex shedding starts to diminish the sidewise actions on the cylinder. This is clearly 
reflected in the simulation (figure 12). The frequency of oscillation, however, shows 
quite different behaviour than that observed for a uniform flow around a fixed cylinder 
in an unbounded domain. This is easily understood by realizing that in addition to the 
purely periodic lift caused by vortex shedding, a wall effect must also be considered. 
This wall effect depends on the position of the particle in the channel, which changes 
continuously due to vortex shedding. 

We can also look at the evolution of particle behaviour in terms of instability and 
bifurcation. In the first two regimes, the centre of the channel is a globally stable 
equilibrium position, and the motion of the particles is stable after the initial transient. 
As Re increases, this steady motion becomes unstable and is replaced by an oscillatory 
motion. At the same time, the mean equilibrium position moves away from the 
centreline, giving rise to a diagram (figure 13) that looks like a pitchfork bifurcation. 
The oscillatory solution loses its stability later and evolves into a more complicated 
motion. A prudent researcher might question the fact that the oscillation in regimes C 
and D is not perfectly periodic, and is subject to some irregularity. A plausible 
argument is that factors such as wall effect are inherently non-periodic, and will 
undermine the periodicity so as to induce apparent irregularity. This seems to be the 
case in a recent numerical simulation of a particlespring system in a uniform flow 
(Nomura & Hughes 1992, figures 10 and 13). It is also possible, however, that the 
numerical methods in both studies are simply not accurate enough. At this point, we 
are not certain whether this aspect of our simulation is a correct description of the 
motion or is a defect of our numerical code. 

3.3. Wall effects 
The major features of the sedimentation discussed above also occur in the other two 
channels with different width: L = 1.5d and 8d, although at different Reynolds number 
intervals. The wall effects are examined in various regimes here. 
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FIGURE 14. Trajectories of particles settling in the steady equilibrium regimes in the narrow channel 
( L  = 1.5d) at various terminal Reynolds numbers: (a) Re = 0.65, (b) Re = 3.23, (c) Re = 6.28. 
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FIGURE 15. Trajectories of particles settling in the steady equilibrium regimes in the wide channel 
(L  = 8d) at various terminal Reynolds numbers: (a) Re = 1.96, (b) Re = 5.27, (c) Re = 12.0. 

(i) The steady equilibrium regimes, either with or without overshoot, are dominated 
by the wall repulsion, and so the Reynolds-number intervals are shifted up in a wider 
channel. This is made clear by comparing figures 14 and 15 with figures 6 and 7 .  
Actually, in the 8d channel the wall effect is so much weaker that a smooth overshoot 
is not observed until the steady solution loses stability. 

(ii) The onset of instability of steady sedimentation is decided by the flow field 
around the particle, which is also affected by the walls. This happens very early in the 
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FIGURE 16. Weak oscillatory motion in an 8d channel shortly after the steady solution bifurcated. 
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FIGURE 17. Periodic oscillation of a particle settling in the narrow channel at 
Re = 10.7 based on the mean velocity. 

narrow channel (L  = 1%) because of the strong blockage effect; the critical Reynolds 
number for bifurcation is below the value Re = 10.7 for which a well-developed 
periodic solution is evidently stable (figure 17). In the wide channel (L  = 8 4 ,  the 
instability probably first becomes appreciable around Re = 30 (figure 16). We have not 
carried out a detailed search for points of bifurcation and we cannot assert that the 
critical Reynolds number increases monotonically with channel width. 

(iii) Perfect periodic solutions are obtained in the narrow channel, and the mean 
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FIGURE 18. Strong oscillatory motion of particles settling in the wide channel 
at two Reynolds numbers. 

position of the particle never drifts away from the centreline (figure 17). This is a direct 
result of the strong wall repulsion. Streamlines show that vortex shedding exists at 
Reynolds number as low as 10.7. In the wide channel (L  = 8 4 ,  oscillatory motion 
similar to figure 9 is obtained after a long transient (figure 18). Again, we do not 
understand the origin of the irregular variation of the amplitude. In a wider channel, 
the particle’s mean position tends to be closer to the wall. 

Owing to the high cost, the regime of irregular oscillatory motion at higher Reynolds 
number has not been examined in the wide and narrow channels. 

3.4. Drag coeficient 
From our simulation, a drag coefficient on the particle can be calculated using the 
mean terminal velocity U :  

where ps,pf are the densities of the particle and the fluid; g is the gravitational 
acceleration. 

The results in all three channels are compared in figure 19, along with data from 
other sources. The ‘standard drag’ is an empirical correlation of experimental data on 
a fixed cylinder in an unbounded domain (Sucker & Brauer 1975). Fornberg’s (1980) 
result is from a numerical computation for steady flow around a cylinder in a very large 
domain. Our numerical results shows that wall confinement generally increases the 
drag, up to 50 times in the narrow channel. This effect decreases with Re. In the wide 
channel, the drag comes very close to the standard drag at Re % 30. Fornberg’s drag 
coefficient is consistently smaller than the experimental results. Another interesting 
point is that after the steady equilibrium bifurcates and the particle drifts off the 
centreline, there is a sudden increase in the time-averaged drag with Re. This is 
evidently related to the fact that the particle is close to a wall. 
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FIGURE 20. Comparison of migration velocity between our calculation (Re = 0.522) and the 
perturbation theory of Vasseur & Cox (1977). U is the terminal velocity of the particle in an infinite 
fluid. The centreline is at y = 0.5L. A factor of 4.8 is applied to Re to convert their three-dimensional 
theory for comparison to our two-dimensional calculation as explained in the text. 

3.5. Comparison with other results 
As mentioned in the introduction of this paper, we should try to relate two-dimensional 
numerical simulations to three-dimensional flow situations. A systematic comparison 
with relevant experiments and theories is therefore necessary. Because almost all of the 
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FIGURE 21. Comparison of our simulation for an 8d channel ((a) Re = 5.27, (b)  Re = 12) 
with experimental and theoretical data on sedimentation of a single sphere at small Reynolds number: 
( c )  our experiment at Re = 74.5, ( d )  our experiment at Re = 7.85, (e) Vasseur & Cox (1977) at 
L = 38.6d, Re = 0.093. 

experiments have used spherical particles, we at least have to convert the Reynolds 
number to ensure meaningful comparison, since circular cylinders have almost exactly 
the same wake structure as spheres, only at a much lower Reynolds number. Let us use 
the separation Re as a rough criterion. For spheres, circulation zones first appear at 
about Re = 24 while for cylinders Re = 5 (Van Dyke 1982). Thus a ratio of 4.8 will be 
applied hereafter whenever a conversion is needed. 

On the lower end of the Re spectrum, we have to mention the perturbation analysis 
of Vasseur & Cox (1977). Their theory, like all other theories of its kind, is unable to 
follow the actual motion of the particle. Instead, they can only calculate the lateral 
force experienced by a particle if it were settling vertically in a channel at constant 
speed. Then they defined a 'migration velocity' by the Stokes drag: 

U :  = F ; / ( b ~ a p ) ,  

where a is the radius of the sphere and FL is the lift force. Within the confines of their 
approximations, they have shown that no matter where the particle is, the lift force acts 
like a resultant of the repulsion from both walls and tends to move it to the centreline. 
This is in agreement with our simulation in the low-Re regime. If we assume that the 
lateral migration is of constant speed, then their U ;  can be compared to our migration 
velocity after applying the aforementioned ratio of 4.8 (figure 20). The numerical 
discrepancy should not be surprising, since their theory is valid for vanishing Re only 
and includes other assumptions about the particle's motion. 

To support their theory, Vasseur & Cox also did experiments on the sedimentation 
of a small sphere in a vertical duct of a rectangular cross-section. The aspect ratio was 
6: 1 so that the effect of the two widely spaced walls may have been negligible. They 
observed migration away from the wall to the centreline between the two closely spaced 
walls at Re = 0.093. Tachibana (1973), working with spheres settling in a vertical 
round pipe, observed a similar phenomenon at Re = 7.3. In our laboratory, we have 
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FIGURE 22. (a) Settling of a sphere in 35 % glycerin in water in a narrow (L  = 4d) ‘two-dimensional’ 
channel. Particle diameter d = 0.25 in., Re = 256.9. (b) Settling of a sphere in 30% glycerin in water 
in a wide ( L  = 8 4  ‘two-dimensional’ channel. Particle diameter d = 0.25 in., Re = 348.8. 

used two ‘two-dimensional ’ columns with very high aspect ratio such that the particles 
are confined to virtually plane motion (Fortes, Joseph & Lundgren 1987; Volpicelli, 
Massimilla & Zenz 1966). The width of the channels used is 1 in. for the narrow 
channel and 2 in. for the wide channel. The fluid used in the channels is an aqueous 
solution of glycerin, whose density and viscosity can be changed with the concentration 
of glycerin. Again, spherical particles (diameter d = 0.25 in.) migrate away from the 
wall to the centre of the ‘two-dimensional’ channel at relatively small Reynolds 
numbers. A comparison of these experimental data with our simulation is shown in 
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FIGURE 23. Settling of a circular particle in 20% glycerin in water in a wide ( L  = 8d) ‘two- 
dimensional’ channel. The particle is a short circular cylinder with its axis kept horizontal in the ‘ two- 
dimensional’ channel. Particle diameter d = 0.25 in., length = 0.25 in., Re = 443.6. 

figure 2 1. Obviously, the overall migration is correctly simulated, although quantitative 
discrepancies exist for understandable reasons. We see dynamic similarity between 
two-dimensional simulations and experiments in three dimensions using a ‘ two- 
dimensional’ bed, but at different Reynolds numbers much greater than our 4.8 factor 
of conversion, and with no systematic difference. Evidently two-dimensional simulation 
has a restricted application to three-dimensional motions in a ‘two-dimensional’ bed. 

Denson, Christiansen & Salt (1966) observed the under-damped oscillatory motion 
predicted by our simulation in regime B for a wide range of Reynolds number 
(16 - 120). Repetti & Leonard (1966) reported similar behaviour. Although their flow 
situations are different (buoyant particle migration in a pipe flow), the physical 
mechanisms governing migration should be the same. To check the prediction of 
simulation in this regime of sedimentation we used less viscous liquid in our two- 
dimensional channels to observe the settling at higher Reynolds numbers. The 
trajectory of the sphere in the two-dimensional channel at Re = 256.9 (figure 22a) 
looks like the prediction of our two-dimensional simulation at Re = 8.33 in figure 7. 
The same sequence of dynamics is observed in two-dimensional simulations and three- 
dimensional motions in two-dimensional beds, but the Reynolds numbers in the 
experiments are much higher and the intervals of Reynolds numbers in which a given 
dynamics is prevalent are also larger in the experiments. 

The rocking motion corresponding to our regime D has been reported in the 
literature in pipe flow. Foster, Hair & Doig (1975) recorded the motion of spherical 
particles suspended in a pipe flow and identified four different regimes. In their regime 
D, covering a particle Reynolds number range of 200 to 10000, the particles oscillate 
steadily in the radial direction around a mean equilibrium position close to the wall. 
This description is in good agreement with our simulation in the high-Re regime. In our 
two-dimensional channel, we also observed the typical behaviour of persistent 
oscillation. A trajectory recorded by video-taping is shown here (figure 22 b). Note that 
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FIGURE 24. Sedimentation of a 2: 1 elliptic cylinder in a channel of width L = 4d, d being the length 
of the major axis. (a)  Lateral position of the centre of the ellipse ( y / L ) ,  initial yo = 0.5L. (b) 
Orientation of the ellipse (when the major axis is horizontal, 0 = 0), initial 0,, = 45". (i) Re = 2.0, (ii) 
Re = 12.8, (iii) Re = 26.7, (iv) Re = 35.7. 

this time the Reynolds number is actually in our simulated high-Re regime. This is in 
contrast to the lower-Re regimes, where the two-dimensional channel gives the same 
behaviour at much higher Re. This shows that the effects of close sidewalls in a two- 
dimensional channel are complicated and depend on the Reynolds number. 

Finally, let us consider the last regime of motion. Tachibana (1973) briefly 
mentioned that when the terminal Re = 500 - 750, the settling sphere experiences an 
irregular and complex motion, and often in three dimensions. This is the only 
verification of our irregular oscillation regime simulations that we could find in the 
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FIGURE 25. Streamlines around a 2: 1 elliptic particle at different Reynolds numbers. 

literature. In our two-dimensional channels, sedimentation tests indeed reveal 
irregularity in the lateral rocking motion when Re is large enough. Figure 23 shows a 
typical trajectory of a short cylinder in our wide channel. 

In summary, the regimes of flow predicted by two-dimensional simulations appear 
in experiments in which spheres and short cylinders sediment between close walls. The 
sequence of regimes is the same in the simulations and experiments, but the values of 
the Reynolds number defining the regimes can be much different in a non-uniform way. 

4. Settling of an elliptic particle between parallel walls 
The orientation of a sedimenting elliptical particle is of interest. Inertia is important 

because it gives rise to a turning couple on the particle that determines a preferred 
orientation. 

4.1. Reynolds-number regimes 
The settling behaviour of an elliptic particle can be classified into four different Re 
regimes in very much the same fashion as in last section. Figure 24 shows typical 
trajectories and orientations of a 2: 1 ellipse for different Reynolds numbers. 

The lateral motion and rotation are very similar and closely related. If the Reynolds 
number is below a critical value, which can be roughly estimated as around 25, the 
particle eventually settles steadily. The final equilibrium position is at the centre of the 
channel, obviously due to the same wall effects which force circular cylinders to the 
channel centre, and the preferred orientation is with the major axis perpendicular to the 
direction of the settling. This is a well-known result of potential flow theory (Lamb 
1932, pp. 174177) which has been generalized to viscous flow by Huang, Feng & 
Joseph (1994). The approach to this final configuration does not overshoot at small 
Reynolds numbers (Re = 2, say), although there is a big hump in the lateral motion 
because of a lift force related to the initial orientation of the body. At larger Re, the 
inertia is stronger and causes overshoot in both y and 8 (Re = 12.8). This initial 
oscillation is still an inertial effect which is damped by viscosity after a few cycles. At 
still larger Re, this oscillation becomes persistent, and is apparently identical to the 
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FIGURE 26. Sedimentation of a 1.1 : 1 elliptic cylinder in a channel of width L = 4d at Re = 345. 
(a) Lateral position y ,  initial yo = 0.5L; (b) angular position 19, initial 0, = 90”. 

zigzag motion of a rising bubble in a liquid (Saffman 1956; Hartunian & Sears 1957). 
As for the driving force that sustains the oscillation, Jayaweera & Mason (1965) 
pointed to vortex shedding. But streamlines in our calculation (figure 25) suggest that 
prior to vortex shedding, the periodic ‘swing’ of the attached eddies is enough to 
maintain the oscillation (Re  = 26.7), which is supported at higher Re by the stronger 
side-ways action of vortex shedding (Re  = 35.7: this value is very close to the critical 
Re predicted by Jackson (1987) for the onset of vortex shedding behind a 2: 1 ellipse). 
This verifies Saffman’s (1956) surmise that the zigzag pattern of a rising bubble is 
caused by ‘an oscillation in the wake or a periodic discharge of vorticity from behind 
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FIGURE 27. Sedimentation of a 2 : l  elliptic cylinder in the wide ‘two-dimensional’ channel at 
Re = 694.7. (a) Lateral position of the centre of the ellipse; (6) orientation of the cylinder (0 = 0 is 
with long axis horizontal). 

the bubble’. It is interesting to note that the rocking and oscillating particle does not 
drift off the centre of the channel as a circular particle does. This is related to the fact 
that as long as the body does not tumble, an enduring rotation in one sense is not 
possible. This is further illustrated by a high-Re calculation shown in figure 26. Even 
for aspect ratios as small as 1.1 and Re as high as 345, the broadside-on effect prevents 
the ellipse from tumbling. Thus, although the inertial action initially moved the particle 
far enough from the centreline, no lift force sustains this position and the particle is 
gradually pushed back to the centreline by the wall effect. This is strong support for 
the mechanism proposed in 53.2, in which a rotation-induced lift is the agent 



120 J. Feng, H.  H .  Hu and D. D. Joseph 

Y 
L 
- 

0.9 

0.7 

0.5 

0.3 

0.1 
0 5 10 15 20 25 

X l L  

270 

180 

90 

0 
0 

180 

-210 

-360 
0 5 10 15 20 25 

X l L  

FIGURE 28. Sedimentation of a 2 : l  elliptic cylinder in the narrow ‘two-dimensional’ channel at 
Re = 666.9. (a) Lateral position of the centre of the ellipse; (b) orientation of the cylinder (19 = 0 is 
with major axis horizontal). 

destabilizing the equilibrium at the centreline. Another interesting feature in figure 26 
is the distortion in the oscillatory motion. An examination of the flow field 
(streamlines, vorticity and pressure distribution) around the particle at different time 
steps reveals that the small wiggles are caused by periodic vortex shedding. The 
oscillation of lower frequency is due to the inertial lift and torque associated with the 
orientation of the particle, and will eventually be damped out by viscosity. 

Jayaweera & Mason (1965) have made the only systematic observations and 
measurements of settling cylindrical particles, which possess the same geometric 
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FIGURE 29. Effect of aspect ratio of elliptic cylinders on their sedimentation in a vertical channel, 
8 = 0 is with the major axis horizontal. Initial 8, = 45". (i) Aspect ratio 2 :  1, Re = 12.8; (ii) aspect 
ratio 4: 1, Re = 16.6. 

features as our two-dimensional elliptic particle. Their description of the low-Re steady 
motion, the damped oscillatory motion and finally the persistent fluttering motion is 
in perfect agreement with the simulations given here. Especially, they recognized the 
broadside-on mode as the stable orientation if Re is below a certain value, and believed 
that vortex shedding is the reason for the subsequent regime of persistent oscillation, 
which may not be entirely true as suggested by the simulation at Re = 26.7. 

As an independent verification, we studied the sedimentation of ellipsoids of aspect 
ratio 2 : 1 in our ' two-dimensional ' channels. Despite geometric differences, essentially 
the same behaviour is observed. Figure 27 shows how the equilibrium at the centreline 
is approached in the wide channel ( L  = 8d). Figure 28 shows high-Re oscillatory 
behaviour in the narrow channel when sporadic tumbling starts during the fluttering 
sedimentation. Three interesting points should be noted from these two figures. First, 
the Reynolds numbers for experiments in our two-dimensional channels are much 
larger than Re in our simulation. Jayaweera & Mason's test in a large tank gives 
threshold Re values comparable with our numerical results after making the required 
two-/ three-dimensional Re conversion. We again see that the influence of the bounding 
walls on the particle motion in the 'two-dimensional' channel is complex and that it 
seems to affect the motion in the vertical and horizontal directions differently. Besides, 
our experiments indicate that the unsteadiness in the settling is enhanced by wall effects 
in a narrow channel. Finally, a careful study of figure 28(a, b) shows that tumbling 
corresponds to (temporary) off-centre positioning of the particle. This again supports 
our argument about the tumbling and off-centre drift made in explanation of figure 26. 

4.2. Other efsects 
The aspect ratio is also a factor in determining how an ellipse settles. Jayaweera & 
Mason (1965) concluded that at the same Re, the motion of shorter particles is always 
more apt to be unsteady. The larger the aspect ratio, the higher Re has to be to realize 
the constant fluttering mode of motion. This may appear at first glance to contradict 
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FIGURE 30 (a, b)  For caption see facing page. 

the fact that the critical Re for vortex shedding from an ellipse is smaller if the ellipse 
is thinner in the.direction of the stream (Jackson 1987). But the motion of a free particle 
depends on more than the flow field around it. For example, the motion of a longer 
particle induces a larger added mass and an especially larger added moment of inertia, 
and therefore is more stable in its reaction to outside forces and torques. We tried to 
simulate this mechanism, and the effect seems not to be as pronounced as in the 
experiments of Jayaweera & Mason. In figure 29, we show that the reaction of a 4: 1 
elliptic cylinder at bigher Re is not quite as strong as a 2: 1 ellipse at smaller Re. 

Another fact that deserves mentioning is that the inertia (and moment of inertia) of 
the particle itself is as influential as that of the fluid. In our simulation we have noticed, 
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FIGURE 30. The sedimentatio? of two circular particles in a 4d channel. Final Re = 2.87. The 
dimensionless time t* = t(g/@. (a) Vertical distance between particles, (b )  particle positions in the 
horizontal direction, (c) angular velocity (negative w corresponds to clockwise rotation). 

for example, that a lighter particle rising in the fluid is more active than a heavier 
particle settling at the same Re. One implication is that the specification of Re plus 
geometry is not sufficient to identify the motion of a free body. We have not in this 
paper carried out systematic studies of the inertia of the particle. 

5. Interaction of two particles settling in a channel 
Joseph et al. (1987) and Fortes et al. (1987) discovered that the basic mechanisms 

controlling the motion and interactions of spherical bodies at moderately high 
Reynolds numbers are associated with wakes and turning couples on long bodies. This 
was described by them as drafting, kissing and tumbling (DKT). A dynamic simulation 
of DKT was given by Hu et al. (19926) at Re = 30 and 100. In this section, we will 
study the motion and interaction of two particles settling in a two-dimensional channel 
at various Reynolds numbers. Two circular particles of diameter d are released in a 
vertical channel of width L and then settle under gravity. Two channel widths are used: 
L = 4d and 8d. The initial positions of the particles are midway between the centreline 
of the channel and one wall, with one particle 2d behind the other, except in one case 
in which we started two particles horizontally aligned, 2d apart across the centreline 
(figure 32). 

5.1. Steady solutions 
At low Reynolds numbers, there is an attracting steady solution in which two particles 
settle in a staggered structure with constant velocity. A typical run in a 4d channel with 
final Re = 2.87 is shown in figure 30(a-c). The particles are initially midway between 
the centreline and one wall, with one particle 2d behind the other. After release, the 
trailing particle accelerates into the wake of the leading particle. After a close 
approach, the trailing particle turns around the leading one without touching it. After 
this, the particles enter a damped oscillation. Figure 30(a) shows the variation of the 
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vertical distance between the particles. In the lateral motion (figure 30b), the leading 
particle is closer to one wall and oscillates with smaller amplitude than the trailing 
particle. The angular velocity of both particles oscillates also (figure 30 c), the trailing 
particle with a larger amplitude. 

The oscillation is mostly damped by viscosity before t* = 2000, and a perfectly stable 
equilibrium configuration is attained in which the two particles are staggered and settle 
with constant velocity. The particles rotate in the same sense and the trailing particle 
rotates slower than the leading one in this particular case. 

A similar simulation was performed in an 8d channel in which the final Reynolds 
number was Re = 1.52, and the results are shown in figure 3 1 (a-c). The initial transient 
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FIGURE 31. The sedimentation of two circular particles in an 8dchannel. Final Re = 1.52. (a) Vertical 
distance between particles, (b) particle positions in the horizontal direction, (c) angular velocity 
(negative w corresponds to clockwise rotation). 

is the same as in the last run. After that, the viscous damping is much weaker even 
though the Reynolds number is smaller than in the 4d channel. The frequency of 
oscillation is also smaller. The two particles rotate in the same sense, and the trailing 
particle rotates faster than the leading particle. We did not continue the computation 
to the final steady state because of the high cost of computing slow decay. But it is clear 
that the amplitude of oscillation decreases monotonically, and a stable staggered 
structure should eventually be achieved. The small wiggles in Sx/d are a numerical 
effect caused by using large time increments in explicitly updating the particle 
positions. 

The characteristic behaviour of two particles settling in a channel at low Reynolds 
numbers can be compared with the low-Re settling of two cylinders in a very large 
container. The two-cylinder problem was studied in the experiments of Jayaweera & 
Mason (1965) who found that the trailing particle would first accelerate toward and 
then turn around the leading one, in much the same way as described here. Then they 
would align in a horizontal line and separate while settling. A similar interparticle 
repulsion was discovered by Kim et al. (1993) in a three-dimensional flow past two 
spheres. In a two-dimensional fluidized bed, Joseph et al. (1987) and Fortes et al. (1987) 
observed that particles form stable cross-stream arrays. The results of our simulation 
are consistent with these observations. However, the channel walls appear to have a 
stronger influence in the simulation than in the experiment. The walls tend to push the 
particles together and their mutual repulsion keeps them apart. The competition is 
resolved with a staggered rather than cross-stream arrangement in the channel. In the 
experiments of Joseph et al. (1987), the cross-stream arrays also tend to bend slightly 
close to the walls. 

The same solution arises from a different initial condition in which two particles are 
released from a horizontal line (figure 32a-c). Before t* = 1000, the particles settle 
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FIGURE 32(a, b) For caption see facing page. 

symmetrically while separating and rotating in different senses in just the way described 
by Jayaweera & Mason (1965). Then the separation and rotation stop and a steady 
horizontal structure appears for a time (1000 < t* < 3000). But soon wall repulsion 
ruins the symmetry and pushes one particle to the centreline, slowing it down at the 
same time. This leads to the same damped oscillation as shown in figure 31. The 
transition from different initial conditions to the final staggered structure in our two- 
dimensional simulation suggests that the staggered structure is an attractor. 

Hydrodynamic interactions between particles and walls are stronger in a narrower 
channel. In our 4d channel, the oscillation frequency is higher and the damping is 
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FIGURE 32. The sedimentation of two circular particles in an 8d channel. Initially the particles are on 
the same horizontal line. Final Re = 1.52. (a) Vertical velocity component, (b) particle positions in 
the horizontal direction, (c) angular velocity (negative w corresponds to clockwise rotation). 

faster. The angle between the line of centres and the horizontal is smaller and the 
particles are less staggered than in an 8d channel. 

The rotation of the leading particle is such that it seems to be rolling up the nearby 
wall. This is similar to the low-Re settling of a single particle. The trailing particle 
experiences a strong downward stream on its right side due to the wake of the leading 
one (figure 33). This asymmetry of the flow on both sides of the trailing particle results 
in a remarkable rotation in the same sense as that of the leading particle. In the 4d 
channel (figure 30), the trailing particle is on the opposite side of the channel to the 
leading one, and rotates slower than the leading particle. In the 8d channel (figure 3 l), 
the trailing particle is near the centreline and rotates faster than the leading one. 
Rotation influences the staggered structure by inducing a Magnus type of lift on both 
particles, which balances the wall repulsion and interparticle repulsion to maintain a 
stable configuration. 

5.2. Periodic solutions 
At larger values of the Reynolds number, the staggered steady structure bifurcates into 
a periodic motion, due primarily to effects of the wake. The motion and rotation of two 
particles settling at average Reynolds number Re = 3 are shown in figure 34. The 
vertical distance between the particles varies periodically. The trailing particle oscillates 
around the centreline and the leading one oscillates around a line closer to one wall. 
They rotate in the same sense with angular velocities which vary periodically after an 
initial transient. The trailing particle rotates faster than the leading one. This difference 
in speed may be interpreted by the reasoning given at the end of 6 5.1. The interaction 
between particles is illustrated by the series of snapshots of the particle motion shown 
in figure 35. Suppose that in the early stage of settling, a staggered structure is formed 
(figure 35ai). The trailing particle is pulled into the wake of the leading particle (figure 
35 aii). When the particles get close enough, interparticle repulsion throws the trailing 
particle out of the wake (figure 35aiii,iv). Now the simultaneous action of wall 
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FIGURE 33. Streamlines for the settling of two particles at Re = 1.52 in an 8d channel. Note that 
the wake of the leading particle causes the trailing particle to rotate clockwise. 

repulsion, interparticle repulsion and lift due to rotation tends to restore the original 
staggered structure by slowing down the trailing particle and increasing the vertical 
separation (figure 35av,vi). Then the entire process will repeat. The addition of wake 
suction to the force balance in the horizontal direction, which would maintain a steady 
staggered structure at a lower Re, causes the periodic vertical manoeuvre. 

The wake suction induces a persistent oscillation in the motion and rotation of the 
particles. Numerical tests show that the frequency and amplitude of the oscillation 
increase with the Reynolds number. We also note that for larger Reynolds number, the 
mean position of the trailing particle is swept further behind, and the angle that the line 
of centres between particles makes with the vertical wall becomes smaller (figure 36). 

5.3. Drafting, kissing and tumbling 
At even larger Reynolds numbers, the interaction between particles assumes a more 
active pattern. The trailing particle is sucked into the wake of the other, and drafted 
toward it with increasing velocity. Then they almost touch (‘kissing’, see figure 
35bii: the distance between centres at this moment is 1.013d). Because the 
configuration with the doublet standing vertically is unstable, it tumbles and the top 
particle turns around the bottom particle to take the lead (figure 35 biii, iv). The particle 
near the wall gains a small upward velocity and is ejected with a large lateral velocity 
to the sidewall (figure 35biv). After a time, this particle moves away from the wall and 
is again attracted to the wake of the leading particle (figure 35bv) and the cycle is 
repeated. At this Reynolds number, the two particles never come into actual contact. 
When they are close, the lubrication layer between them provides a high enough 
pressure to keep them apart. At higher Reynolds numbers, the inertia of particles 
becomes strong enough and they tend to collide. The meshing program breaks down 
at this moment. 

In summary, the most important factors in the interaction among settling particles 
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FIGURE 34 (a, b) For caption see page 130. 

are interparticle repulsion and wake suction. If walls are present, they impose lateral 
forces to modify the motion of particles. Reynolds number influences the motion and 
interaction of particles gradually. 

As mentioned before, the numerical simulations at small and large Reynolds 
numbers are consistent with experimental observations (Jayaweera & Mason 1965 ; 
Joseph et al. 1987). But we cannot simulate the stably locked structure discovered by 
Fortes & Joseph (1992) at intermediate Reynolds numbers. Their experiment was 
performed using spheres in a two-dimensional fluidization apparatus. The particles are 
confined to move in a plane. For 22 < Re < 43, a cluster of up to four particles are 
arranged in a stable staggered structure. At Re out of this range (either larger or 
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FIGURE 34. The sedimentation of two circular particles in an 8d channel. Final Re = 3. (a) Vertical 
velocity component, (b) vertical distance between particles, ( c )  particle positions in the horizontal 
direction, (d) angular velocity (positive w corresponds to counterclockwise rotation; note that the 
leading particle is close to the left wall). 

smaller), the usual DKT behaviour prevails. Our two-dimensional simulation predicts 
a gradual transition as Re increases. Thus, the observed stably locked structure is 
probably caused by the two walls that are very close to the particles. The peculiar wall 
effect in a ‘two-dimensional’ apparatus of this type has been discussed in $93.5 and 4.1 
as associated with sedimentation of single circular and elliptic particles. 
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FIGURE 35. (a) The interaction between two particles settling in an 8d channel at Re = 3. 
(i) t = 24.01 s, (ii) t = 25.89 s, (iii) t = 27.49 s, (iv) t = 29.43 s, (v) t = 31.62 s, (vi) t = 33.64 s, (vii) 
t = 35.6 s. (b) The interaction between two particles settling in an 8dchannel at Re = 70. (i) t = 0, (ii) 
t = 1.634 s, (iii) t = 2.518 s, (iv) t = 3.023 s, (v) t = 5.3735 s. 

Re 

FIGURE 36. The mean relative position of the settling particles at various Reynolds numbers. 
The channel width L = 8d. 

6. Conclusions 

conclusions can be drawn for the parameter ranges covered in this study. 
Based on the results and discussions presented in this paper, the following 

(i) A circular particle settling in a vertical channel can be said to experience five 
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different regimes of motion at different Reynolds numbers, which are closely related to 
the wake structure behind the particle. When Re is small, the particle migrates to a 
steady equilibrium at the centre of the channel. This steady motion bifurcates into a 
oscillatory motion at a critical Reynolds number, and the mean equilibrium position 
is moved off the centreline toward one wall. At higher Reynolds numbers, this periodic 
motion is unstable and gives way to irregular motion. 

(ii) Channel walls affects the sedimentation of a particle. The Reynolds number 
intervals in which a certain regime occurs vary if the channel width changes. Walls also 
increase the drag coefficient of a settling particle. Particles are always kept a certain 
distance away from the wall by a repulsion. This effect can be of significance in the 
transportation of particulate mixtures. 

(iii) A settling elliptic particle exhibits similar regimes of motion at different 
Reynolds numbers. At small values of the Reynolds number, steady settling is 
ultimately achieved. When vortex shedding occurs, persistent rocking motion prevails. 
Since tumbling is difficult for an elliptic cylinder, the mean equilibrium position does 
not deviate from the centreline. 

(iv) The interaction of two particles settling in a channel gives rise to different 
regimes of motion. Bifurcation of the steady solution to periodic solution occurs at low 
Reynolds number without vortex shedding. This is a particle system bifurcation rather 
than a fluid bifurcation. The drafting-kissing-tumbling scenario is realized at higher 
Reynolds numbers. 

(v) The results of our two-dimensional simulations are in good qualitative agreement 
with experiments on sedimentation and fluidization of spheres and long particles 
confined to move in two dimensions by close walls. No universal rule for quantitative 
comparisons of two-dimensional simulations with three-dimensional flow has been 
found. 

Finally, we note that our fully nonlinear simulations discovered features of the 
particle motion previously unknown in perturbation theories, such as the bifurcation 
and drift away from the centreline. 
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